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ABSTRACT: The natural product withaferin A exhibits potent antitumor
activity and other diverse pharmacological activities. The recently discovered
withalongolide A, a C-19 hydroxylated congener of withaferin A, was
recently reported to possess cytotoxic activity against head and neck
squamous cell carcinomas. Semisynthetic acetylated analogues of with-
alongolide A were shown to be considerably more cytotoxic than the parent
compound. To further explore the structure−activity relationships, 20 new
semisynthetic analogues of withalongolide A were synthesized and evaluated
for cytotoxic activity against four different cancer cell lines. A number of
derivatives were found to be more potent than the parent compound and withaferin A.
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Withanolides are a group of naturally occurring C28
steroidal lactones assembled on an ergostane skeleton.

Most of the withanolides are highly oxygenated members of the
Solanaceae family.1,2 Withaferin A (1; Figure 1) has a wide

range of biological activities, such as antitumor, antimicrobial,
antioxidant, anti-inflammatory, immunomodulatory, protective,
and antiangiogenic effects.1−6 The antitumor activity of
withaferin A results from targeting multiple signaling pathways
such as HSP90 and NF-κB that may circumvent the
development of resistance among cancer cells.7−11

Recently, Zhang et al. reported the isolation, structures, and
cytotoxic activities of withanolides featuring the presence of a
rare C-19 hydroxy group.12,13 Withalongolide A (2; Figure 1)
was found to be less potent than withaferin A against the
carcinoma and melanoma cell lines tested. However, the

semisynthetic derivatives withalongolide A 4,27-diacetate 7 and
withalongolide A 4,19,27-triacetate 8 (Scheme 1) showed
improved potency and selectivity against the melanoma cell line
B16F10 over both the parent compounds 2 and 1.12 This led us
to initiate a study to examine preliminary structure−activity
relationships (SARs) for compound 2. In this letter, we report
the synthesis and biological evaluation of 20 new semisynthetic
analogues of this fascinating class of cytotoxic agents.
Previous authors have asserted that a 2-ene-1-one, a 5β,6β-

epoxide, and a 17β-oriented δ-lactone are essential for
biological activity.2,14,15 Accordingly, we initially sought to
minimize modifications at these positions. Moreover, since the
di- and triacetate of compound 2 displayed significant
selectivity against melanoma cell line B16F10 with a potency
in nanomolar range, we first focused on examining the effects of
different derivatives of the free hydroxyl group of 2.
Accordingly, we prepared a series of aliphatic esters of 2

(Scheme 1). After slight modifications of the standard
acetylation procedures, it was possible to isolate mono- (3−
5) and diacetylated analogues 6 and 712 from the same reaction
along with some recovered 2 (acetic anhydride was added in
two portions; see the Supporting Information for details).
Withalongolide A 4,19,27-triacetate 812 and withalongolide A
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Figure 1. Chemical structures of withaferin A and its C-19 oxygenated
analogue, withalongolide A.
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4,19,27-propionate 9 were obtained by treating 2 with
appropriate anhydrides in the presence of pyridine and a
catalytic amount of 4-(dimethylamino)pyridine (DMAP).
The second series of analogues entailed the synthesis of

acetates and aromatic esters in assorted combinations along
with carbamates (Scheme 2). The reaction of 2 with p-
chlorobenzoyl chloride under typical acylation conditions
afforded a mixture from which mono- (10), di- (11 and 12),
and tri-p-chlorobenzoate ester 13 were isolated.16 The free C-
19 hydroxyl group of 12 was further acetylated with acetic
anhydride to afford compound 16. Carbamoylation only
occurred at the C-4 hydroxyl, even after treating 2 with excess
dimethylcarbamoyl chloride, to afford monosubstituted dime-
thylcarbamate analogue 14. Subsequent acetylation of the
remaining two hydroxyl groups with acetic anhydride delivered
compound 15 in good yield. Efforts to make carbonate
analogues from phenylchloroformate led to a multitude of
products, which seemed to be unstable.
Jaborosalactones are withanolides isolated from Jaborosa

species. We synthetically prepared close derivatives of known
jaborosalactones by chemically manipulating 8 as shown in
Scheme 3. Thus, the palladium-catalyzed, formate-mediated
reduction of triacetate 8 afforded a mixture of jaborosalactone
derivatives 1717 and 1818,19 through C-4 deoxygenation of the
acetate group.20 The structure of the diacetate analogue of
jaborosalactone V 17 was confirmed by single-crystal X-ray
diffraction analysis (Figure 2).17 Compound 18, a C-19 acetate
analogue of jaborosalactone B 27-acetate was obtained via
similar C-4 deoxygenation followed by subsequent epoxide
ring-opening.18,19 Analogue 19, a C-19 acetate derivative of
jaborosalactone E 27-acetate, was obtained by epoxide ring-
opening of compound 17 using hydrogen chloride solution in
ether.21 Besides being expected from a mechanistic perspective,
antirelationship of the C-5 chlorine and C-6 hydroxyl groups
was assigned based on NMR data comparison with the
literature values for jaborosalactone E and similar com-
pounds.22,23 Acetylation of a small amount of compound 19

showed a downfield shift of H-6 from δ 3.99 to 5.12 ppm
suggesting the presence of a hydroxyl group at C-6 (data not
shown).21,24 The C-6 free hydroxyl group of compound 18 was
further acetylated to provide triacetylated analogue 20.
The α,β-unsaturated ketone of withaferin A is a Michael

acceptor.10 Therefore, we sought to modify the α,β-unsaturated
ketone in order to modulate its reactivity. Initial attempts to
perform Diels−Alder reactions on the Δ2,3-olefin were
unsuccessful. Subsequent efforts were directed toward the
synthesis of α-substituted aryl analogues of the ring A enone of
2. Compound 2 and its triacetate analogue 8 were subjected to
α-iodination conditions using iodine and DMAP to afford their
corresponding α-iodoenone analogues 21 and 22 (Scheme
4).25 However, attempts to modify these α-iodoenones through
Suzuki cross-coupling with boronic acids26,27 to obtain α-aryl
analogues met with no success; only decomposition of the α-
iodoenones was observed.
The final analogue was prepared via ring-closing macro-

cyclization28,29 to afford a rare steroidal macrocycle (Scheme
5).30,31 Thus, bis-acylation of withalongolide monoacetate 3
with 4-pentenoic anhydride afforded 23. Ring-closing meta-
thesis with Grubb’s II catalyst exclusively afforded the 14-
membered macrocycle 24 with E-configuration.32

All synthesized analogues of 2, along with withaferin A as a
positive control, were tested for their cytotoxic activity against
four cancer cell lines: head and neck squamous cell carcinoma
(HNSCC, JMAR), breast cancer cells (MDA-MB-231),

Scheme 1. Synthesis of Acetylated and Propionylated
Analogues of Withalongolide A (2)a

aReagents and conditions: (a) For 3−7, (CH3CO)2O, pyridine, rt,
73% combined yield; (b) for 8, (CH3CO)2O, pyridine, DMAP, rt,
99%; (c) for 9, (CH3CH2CO)2O, pyridine, DMAP, rt, 99%.

Scheme 2. Synthesis of Benzoylated and Carbamate
Analogues of Withalongolide A (2)a

aReagents and conditions: (a) For 10−13, p-chlorobenzoyl chloride,
triethylamine, DMAP, CH2Cl2, rt, 76% combined yield; (b)
(CH3)2NCOCl, triethylamine, DMAP, CH2Cl2, rt, 73%; (c)
(CH3CO)2O, pyridine, DMAP, rt, 70%; (d) (CH3CO)2O, triethyl-
amine, DMAP, CH2Cl2, rt, 95%.
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melanoma (SKMEL-28), and colon cancer cells (DRO81-1), in
addition to normal fetal lung fibroblast (MRC-5) cells (Table
1). Compound 2 was less potent than withaferin A, as
previously reported.12 Acetylation of compound 2 resulted in
more potent analogues with diacetates (6 and 7) and triacetate
8 exhibiting enhanced cytotoxic activity than the monoacety-
lated analogues (3, 4, and 5). Notably, compound 7 was found
to be selectively cytotoxic toward DRO81-1 with an IC50 value
of 0.0580 μM.12 The tripropionylated analogue 9 was also
active with IC50 values in the range of 0.130−1.00 μM. The

increased cytotoxic potency of the di- and triacetate analogues
of 2 could be due to increased lipophilicity leading to enhanced
cell permeability.16,33,34

Although the mono-p-chlorobenzoylated derivative 10 and
C-19,27-dibenzoylated analogue 11 were active, the C-4,27-
dibenzoylated analogue 12 and tribenzoylated compound 13
were not. Compounds 14 and 15 exhibited higher cytotoxic
activity than 2, with compound 15 displaying 3−5 times

Scheme 3. Synthesis of Jaborosalactone Derivatives from
Triacetate 8a

aReagents and conditions: (a) Pd(OAc)2, PPh3, HCO2NH4, dioxane,
reflux, 50% combined yield; (b) HCl solution in ether, CH2Cl2, rt,
70%; (c) (CH3CO)2O, pyridine, DMAP, rt, 87%.

Figure 2. Single-crystal X-ray structure of analogue 17.

Scheme 4. Synthesis of α-Iodoenone Derivatives

Scheme 5. Synthesis of Steroidal Macrocycle 24 from
Withalongolide Monoacetate 3a

aReagents and conditions: (a) (H2CCHCH2CH2CO)2O, pyridine,
DMAP, rt, 92%; (b) Grubb’s II catalyst, CH2Cl2, 37 °C, 87%.

Table 1. Cytotoxicity Activity (IC50 Values in μM) of
Withalongolide A Analogues against Five Cell Linesa

compd JMAR MDA-MB-231 SKMEL-28 DRO81-1 MRC-5

1 1.00 0.540 1.00 0.780 2.70
2 3.10 1.50 1.60 1.70 5.30
3 1.22 0.415 0.705 1.05 2.30
4 3.06 1.15 1.23 0.780 1.80
5 2.48 0.890 1.22 0.570 1.20
6 0.515 0.205 0.230 0.155 0.490
7 0.600 0.635 0.170 0.0580 0.295
8 0.655 0.655 0.110 0.110 0.310
9 1.00 0.365 0.285 0.130 0.615
10 1.72 1.40 2.25 1.85 2.55
11 4.64 2.62 1.11 1.90 2.35
12 >10 >10 >10 >10 >10
13 >10 >10 >10 >10 >10
14 2.09 0.610 0.515 0.585 1.75
15 0.970 0.175 0.205 0.0865 0.510
16 >10 >10 >10 >10 >10
17 1.22 0.790 0.710 1.10 2.05
18 >10 >10 >10 >10 >10
19 2.16 0.800 1.17 1.35 3.15
20 >10 >10 >10 >10 >10
21 >10 >10 9.11 5.25 9.10
22 0.830 0.210 0.275 0.115 0.475
23 1.44 0.625 0.470 0.580 0.865
24 0.965 0.245 0.205 0.225 0.360

aAnalogues 12, 13, 16, 18, and 20 were inactive with IC50 ≥ 10 μM for
all cell lines tested.
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increased cytotoxicity against breast cancer and melanoma cells
compared to 1. Compound 15 also demonstrated modest
selectivity toward DRO81-1 cells with an IC50 value of 0.0865
μM, similar to compound 7.
Jaborosalactone V diacetate 17 was found to be equipotent

to withaferin A 1, suggesting that C-4 hydroxyl group is not
crucial for activity.2,15 Compound 19, containing a 5α,6β-
chlorohydrin, was slightly less potent than the 5β,6β-epoxy
analogue 17, with IC50 values in the range of 0.800−2.16 μM
against melanoma and carcinoma cells. The cytotoxic activity
was abolished in epoxide-lacking analogues 18 and 20.2,15

Even though the 2-iodoenone analogue 22 displayed
comparable cytotoxicity to its parent compound 8, compound
21 showed very weak activity compared to 2. Interestingly,
macrocycle 24 exhibited increased potency compared to its
acyclic analogue 23 across all cell lines tested with IC50 values
in the range of 0.205−0.965 μM.28,29 Most of the active
analogues were moderately selective toward cancer cells
compared to normal fibroblast cells.
In our efforts to contribute toward the development of

anticancer-related therapeutics, we have identified additional
cytotoxic agents based on the natural product withalongolide A
2. Many of these analogues were more potent than the parent
compound, and the SAR profile was in good agreement with
those previously reported for withanolides having similar
structures.1,2,15,16 The selectivity of analogues 7 and 15 toward
colon cancer cells (DRO81-1) is intriguing, and further efforts
are underway to study these analogues as potential anticancer
agents.
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